Adaptive Background Mixture Models for Real-Time Tracking
نویسندگان
چکیده
A common method for real-time segmentation of moving regions in image sequences involves “background subtraction,” or thresholding the error between an estimate of the image without moving objects and the current image. The numerous approaches to this problem differ in the type of background model used and the procedure used to update the model. This paper discusses modeling each pixel as a mixture of Gaussians and using an on-line approximation to update the model. The Gaussian distributions of the adaptive mixture model are then evaluated to determine which are most likely to result from a background process. Each pixel is classified based on whether the Gaussian distribution which represents it most effectively is considered part of the background model. This results in a stable, real-time outdoor tracker which reliably deals with lighting changes, repetitive motions from clutter, and long-term scene changes. This system has been run almost continuously for 16 months, 24 hours a day, through rain and snow.
منابع مشابه
Improved Adaptive Mixture Learning for Robust Video Background Modeling
2 Related Works Gaussian mixtures are often used for data modeling in many real-time applications such as video background modeling and speaker direction tracking. The real-time and dynamic nature of these systems prevents the use of a batch EM algorithm. Currently, online learning of mixture models on dynamic data is achieved using an adaptive filter coupled with reassignment rules. However, c...
متن کاملA Closed-loop Background Subtraction Approach for Multiple Models based Multiple Objects Tracking
Normally visual surveillance systems are based on background subtraction to detect foreground objects and then conduct multiple objects tracking with data association and tracking filters in an open-loop procedure. Different from the state-of-the-art approaches, this paper discusses a closed-loop object detection and tracking method. In our proposed method, each pixel is first modeled with an a...
متن کاملLearning Patterns of Activity Using Real-Time Tracking
ÐOur goal is to develop a visual monitoring system that passively observes moving objects in a site and learns patterns of activity from those observations. For extended sites, the system will require multiple cameras. Thus, key elements of the system are motion tracking, camera coordination, activity classification, and event detection. In this paper, we focus on motion tracking and show how o...
متن کاملObject Tracking usingAdaptive Colour Mixture Models ?
The use of adaptive Gaussian mixtures to model the colour distributions of objects is described. These models are used to perform robust, real-time tracking under varying illumination, viewing geometry and camera parameters. Observed log-likelihood measurements were used to perform selective adaptation.
متن کاملA Real Time Adaptive Multiresolution Adaptive Wiener Filter Based On Adaptive Neuro-Fuzzy Inference System And Fuzzy evaluation
In this paper, a real-time denoising filter based on modelling of stable hybrid models is presented. Thehybrid models are composed of the shearlet filter and the adaptive Wiener filter in different forms.The optimization of various models is accomplished by the genetic algorithm. Next, regarding thesignificant relationship between Optimal models and input images, changing the structure of Optim...
متن کامل